INSTITUTO POLITÉCNICO NACIONAL ESCUELA SUPERIOR DE FÍSICA Y MATEMÁTICAS
Encuentro Amistoso entre el IPN y la Universidad de Yonsei 2023

Questions

1- How many solutions in $Z / 2 Z$ does the equation $x _1+x _2+x _3\left(x _4+x _5\right)+x _2 x _6=0$ have?

2- A simple circuit $\$ \mathrm{C} \$$ of an undirected graph $\$ \mathrm{G}=(\mathrm{V}, \mathrm{E}) \$$ is a sequence $\$\left(\mathrm{v} _1\right.$, , $\left.\operatorname{ldots}, \mathrm{v} _\mathrm{n}\right) \$$ with $\$ n>3 \$$ such that for all $\$ 1 \backslash \mathrm{leq} \mathrm{i}<\mathrm{n} \$$, $\$ \mathrm{v} _\{i+1\} \$$ is a neighbor of $\$ \mathrm{v} _\{i\} \$$, $\$ \mathrm{v} _n=\mathrm{v} _1 \$$ and no other term of the sequence appears more than once. We say that an edge \$elin $\mathrm{E} \$$ is in $\$ \mathrm{C} \$$ if $\$ \mathrm{e}=\left(\mathrm{v} _\{i\}, \mathrm{v} _\{i+1\}\right) \$$ for some $\$ 1$ leq i < $\mathrm{n} \$$.

Given a collection of simple circuits \$C_1,\Idots,C_m\$, we say they form an
 \$e_i\$ in \$C_i\$ such that \$e_i\$ is not in \$C_j\$ if \$jlneq i\$.

Consider the following graph $\$ \mathrm{G} \$$, and determine the maximum number of independent simple circuits in it. That is, find $\$ \$ M=$ Imax $\operatorname{limits} _\{S \text { lin } \backslash \text { Sigma }|S| \$ \$$ where $\$ \backslash$ Sigma $\$$ is the set of all independent sets of $\$ \mathrm{G} \$$.

Graph illustration and adjacency matrix below.
A simple circuit C of an undirected graph $G=(V, E)$ is a sequence ($v _1, \ldots, v _n$) with $n>3$ such that for all $1<=i<n, v _\{i+1\}$ is a neighbor of $v _\{i\}, v _n=v_{-} 1$ and no other term of the sequence appears more than once. We say that an edge e in E is in C if e=(v_\{i\}, v_\{i+1\}) for some $1<=\mathrm{i}<\mathrm{n}$.

Given a collection of simple circuits C_1,...,C_m, we say they form an ltextbf\{independent set\} if for every $1<=\mathrm{i}<=\mathrm{m}$ there is at least one edge e_i in C_i such that $\mathrm{e}_{\mathrm{-}}$ i is not in C _ if j != i .

Consider the following graph G , and determine the maximum number of independent simple circuits in it. That is, find $M=\max ($ limits_\{S in Sigma\} $|\mathrm{S}|)$ where Sigma is the set of all independent sets of G .

Graph illustration and adjacency matrix below.

INSTITUTO POLITÉCNICO NACIONAL ESCUELA SUPERIOR DE FÍSICA Y MATEMÁTICAS
Encuentro Amistoso entre el IPN y la Universidad de Yonsei 2023

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
0	0	0	0	1	0	0	0	0	0	0	0	1	0	1	0
1	0	0	1	0	0	0	0	0	0	0	0	0	1	0	0
2	0	1	0	0	1	0	0	0	1	1	0	0	0	1	0
3	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0
4	0	0	1	0	0	0	0	0	0	1	0	0	1	0	0
5	0	0	0	0	0	0	0	0	0	1	0	0	0	0	1
6	0	0	0	0	0	0	0	0	0	1	1	1	0	0	1
7	0	0	0	1	0	0	0	0	0	0	0	0	0	1	0
8	0	0	1	0	0	0	0	0	0	0	1	1	0	0	0
9	0	0	1	0	1	1	1	0	0	0	1	0	0	0	0
10	0	0	0	0	0	0	1	0	1	1	0	1	1	0	0
11	1	0	0	0	0	0	1	0	1	0	1	0	0	1	0
12	0	1	0	0	1	0	0	0	0	0	1	0	0	0	0
13	1	0	1	0	0	0	0	1	0	0	0	1	0	0	0
14	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0

3- A medical test has sensibility 80% and specificity 98%. If the prevalence of the disease is 85%, what is the probability of being sick if the test is negative.

